
Lecture notes in Theory of electrical engineering. Assoc. Prof. Dr. Boris Evstatiev

Sinusoidal waveform. Instantaneous and RMS values. Phasors.
Resistor, capacitor and inductor in AC circuits. Ohm’s and

Kirchhoff’s laws in AC circuits. Conversation of power in AC circuits.
AC circuit analysis.

5.1. Electric waveforms

Circuits  with  alternating  current  (AC)  are  functions  whose values  vary  in  both  magnitude  and
direction (fig. 5.1). 

Fig. 5.1.

The waveforms are characterized with a couple of quantities: 
The period (T) is the length of time that the waveform takes to repeat itself from start to finish. The
unit for period is second.
The frequency (f) is the number of times the waveform repeats itself within a one second period:

f =
1
T

The unit for frequency is Hertz (Hz).
The amplitude A is the magnitude or intensity of the signal waveform. The unit of the amplitude
depends on the quantity being described: for current it’s amps and for voltage – volts.
There are a couple of fundamental differences between AC and DC circuit:

5.1.1 Current flow
 The current flow in DC circuits is always in the same direction;
 In  AC circuits  the  direction  of  the  charge  flow changes  with  time.  In other  words,  the

electric charges in AC circuits vibrate around their initial place.

a) b)
Fig. 5.2. Electron flow in DC (a) and AC (b) circuits

5.1.2 Skin effect
 The density of the electric charge flow in DC circuits is the same in the whole volume of a

1



Lecture notes in Theory of electrical engineering. Assoc. Prof. Dr. Boris Evstatiev

conductor;
 The density  of  the  electric  charge  flow in  AC circuit  decreases  exponentially  in  depth,

meaning the current density is  higher at  the conductor surface and lower in depth.  This
means that the resistance of the conductors for DC and AC are not the same and could be
significantly different for very high frequencies. The skin effect is going to be discussed
later in the course.

Fig. 5.3. Skin effect in AC circuits.

5.2. Sinusoidal waveform

5.2.1. Basic terms
The  most  commonly  used  waveform  is  the  sinusoidal  one.  Suppose  A ( t )  is  a  sinusoidal
waveform:

A (t )=Аm . sin(ωt+φ)

where Am  is the amplitude – it is the minimal and maximal value of the waveform;

A=
Am

√2
 is the root mean square (RMS), also called effective value;

ω=2.π . f  is the angular frequency of the waveform. It is measured in rad . s−1 ;
φ  is the phase shift in defrees or radians that the waveform has shifted left or right from the

reference point ( t=0 ).
When  φ=0  we say that  the waveform is  in  phase.  When  φ>0  or  φ<0  the phase is
positive or negative respectively (fig. 5.4).

Fig. 5.4.

Consider the current and voltage of a branch are:
v (t )=V m . sin(ωt+φv)

i (t )=Im .sin (ωt+φi)

where φv  and φi  are their phase angles.
The difference φv−φi  is called phase difference (fig. 5.5):

φ=φ v−φi

 If φ>0 then the current lags the voltage by φ ;
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 If φ<0  then the current leads the voltage by φ;
 If φ=0  then the current and voltage are “in phase”.

Fig. 5.5.

5.2.2. Sinusoids and phasors
The sinusoidal waveform  А (t )=Аm . sin(ωt+φ)  could be expressed as a vector, rotating anti-
clockwise with an angular frequency ω  (fig. 5.5).

Fig. 5.5.

As can be seen when the time is  t=0  the vecor is rotated at  0 ° ,  180 °  and  360 ° .
Similarly  when  A (t )  has  a  maximum ( +Am )  the  vector  is  rotated  at  90 °  and  when

A ( t )  has a minimum ( −Am ) – the vector is rotated at −90° .
Consider the current and voltage of a branch are:

v (t )=V m . sin(ωt )
i (t )=Im .sin (ωt−30 °)

The current lags the voltage by  φ=30 °  (fig. 5.6a). Then the phasor diagram of
the two vectors for  t=0  is presented in fig. 5.6b. In time the two vectors rotate
together with angular frequency ω  however the current vector will continue to lag
the voltage by 30 °  (fig. 5.6c).
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a)

b)

c)
Fig. 5.6.

The sinusoidal waveform А (t )=Аm . sin(ωt+φ)  could be expressed in phasor form as:

А
•

m=Am . e jφ=Amcos (φ )+ j Am sin (φ )

where А
•

m
 is also called complex amplitude.

The above equation is called the Euler‘s formula (fig. 5.7).

Fig. 5.7.

Example: Obtain phasors of v1 ( t )=6. sin (ωt+60° ) ,V  and v2 (t )=−6.sin (ωt+30 ° ) .

V
•

m1=6.e j60 °=6cos (60° )+ j6sin (60 ° )=3+ j 5.20,V
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V
•

m2=−6.e j30°=−6cos (30 ° )− j6sin (30 ° )=−5.20− j3
We can also use the RMS phasors:

V
•

1=
6
√2

e j60 °
=4.24cos (60 ° )+ j 4.24 sin (60 ° )=2.12+ j3.67,V

V
•

2=
−6
√2

. e j30 °=−4.24 cos (30° )− j 4.24sin (30 ° )=−3.67− j 2.12,V

Example: Obtain the sinusoids of the peak phasors V
•

m1=2+ j5  and the RMS phasor

V
•

2=5− j 1 .

First we convert the phasors in polar form:

V
•

m1=2+ j5=√22+52 . e
j atan 5

2=5.34 e j68.2°

V
•

2=5− j 1=√52
+12 . e

j atan −1
5 =5.1 e− j11.3°

Then we can write down the sine values:
v1 (t )=5.34 sin (ωt+68.2° ) ,V

v2 ( t )=5.1.√2sin (ωt−11.3° )=7.21 . sin (ωt−11.3° ) ,V

5.3. Sinusoidal steady state

5.3.1. Passive elements
5.3.1.1 Resistors
Consider  an ideal  resistor  powered by a  sine voltage source so that  the current  iR (t )  of  the
resistor has a phase shift φ I=0 :

iR (t )=Im. sin(ωt)

According to Ohm’s law the voltage drop v R (t )  is:
v R (t )=iR (t ) . R=Im . R .sin(ωt)

The phase difference is φ=0  which means that v R (t )  and iR (t )  are in phase (fig 4.8).

a) b)
Fig.4.8.

5.3.1.2 Inductors
Consider an ideal inductor  L  is powered by a sine voltage source which creates the current
iL (t )  with phase shift φ I=0 :

iL (t )=Im .sin (ωt)
The voltage drop on L  is:

v L (t )=L .
d iL ( t )

dt
=L .

d(Im . sin (ωt ))

dt
=ωL. Im .cos (ωt )=ωL. Im . sin (ωt+90 ° )

The above equations  show that  v L (t )  leads  iL ( t )  by  90 °  (fig.  5.9).  Another  important
observation is that the “resistance” of the inductor in sinusoidal steady state is ωL .
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a) b)
Fig. 5.9.

5.3.1.3 Capacitors
Consider an ideal capacitor C is powered by a sine voltage source which creates the current iC (t )

with phase shift φ I=0 :
iC ( t )=Im .sin (ωt )

The votlage drop on the capacitor is:

vC (t )=
1
C∫ iC (t ) dt=

1
C∫ Im . sin(ωt )dt=

−1
ωC

Im .cos (ωt )=
−1
ωC

Im . sin (ωt+90 ° )=
1

ωC
Im .sin (ωt−90 )

The equations show that the voltage vC (t )  lags the current iC ( t )  by 90 . It can also be seen

that the “resistance” of the capacitor is 
1

ωC
 (fig. 5.10).

a) b)
Fig. 5.10.

5.3.1.4 Series RC circuit
Consider a series RC circuit powered by a sine voltage source v ( t )  (fig. 5.11a), which creates the
current i (t )=Im .sin (ωt ) . The voltage drops on the capacitor and the resistor are:

v R (t )=R . Im .sin (ωt)

vC (t )=
1

ωC
Im . sin (ωt−90 )

a) b)
Fig. 5.11
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The above equations could be written with phasors as:

I
•

=
Im

√2
e j0

=I

V
•

R=R I e j0=R I
•

V
•

C=
1

ωC
Ime− j90°

=XC e− j90 ° I
•

The vector diagram of of the voltages and current are presented in fig. 5.11b. It could be seen that
the source voltage is:

V
•

=V
•

R+V
•

C=I
•

(R+XCe
− j90 ° )=I

•

(R− j XC )

In other words the complex impedance of the capacitor is − j XC  or − j
1

ωC
 where 

1
ωC

 is

the capacitive reactance of the capacitor in Ohms.
5.3.1.5 Series RL circuit
Consider a series RL circuit powered by a sinusoidal voltage source  v ( t )  (fig. 5.12a), which
creates the current i (t )=Im .sin (ωt ) . The phasor values are:

I
•

=
Im

√2
e j0

=I

V
•

R=R I e j0=R I
•

V
•

L=ωL I e j90°
=X Le

j90 ° I
•

a) b)
Fig. 5.12

The vector diagram is presented in fig. 5.12b and the source voltage is:

V
•

=V
•

R+V
•

L=I
•

(R+X Le
j90 ° )=I

•

(R+ j XL )
The quantity j X L= jωL  is the complex impedance of the inductor where ωL  is the inductive
reactance in Ohms.
5.3.1.6 Series RLC circuit
Consider a series RLC circuit powered by a sine voltage source  v (t ) , which creats a current
i (t )=Im .sin (ωt )  (4.13). As was already demonstrated the phasor voltage drops on the three

passive elements are:

I
•

=
Im

√2
e j0

=I

V
•

R=I
•

R

V
•

L=I
•

ωLe j90°=I
•

XLe
j 90°

V
•

C=I
• 1
ωC

e− j 90°
=I

•

XC e− j90 °
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Fig. 5.13.

From the above equations we can write:

V
•

=V
•

R+V
•

L+V
•

C=I
•

(R+ j X L− j XC )=I
•

( R+ jX )=I
•

. Z

where X=X L−XC  is the reactance of the circuit in Ohms.
Z=R+ jX  is the complex impedance of the circuit in Ohms.

The complex impedance can also be presented as:
Z=R+ jX=z . e jφ

where z=√R2
+X2  is the impedance of the circuit in Ohms;

φ=tan−1 X
R

 is the phase difference of the circuit in degrees or radians.

The vector diagram of the RLC circuit could have three forms depending on the values of X L

and XC  (fig. 5.14):

 If  
1

ωC
>ωL  the reatance X  is negative and so is the phase difference:  φ<0  (fig.

5.14a);

 If  
1

ωC
=ωL  the reactance  X  is zero and so is the phase difference:  φ=0  (fig.

5.14b). 

 If  
1

ωC
<ωL  the  reactance  X  and  the  phase  difference  are  positive:  φ>0  (fig.

5.14c);

a) b) c)

Fig. 5.14. Vector diagrams of a series RLC circuit: a) 
1

ωC
>ωL  ; b) 

1
ωC

=ωL  ; c)

1
ωC

<ωL .

The situation when  
1

ωC
=ωL  is called series resonance and will be considered more closely

later.
From the vector diagrams could be seen that the resistances of a RLC circuit is given by the sides of
a right triangle (fig. 5.15).
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Fig. 5.15.

Example: Estimate  the  complex  impedance  of  a  RLC  circuit  ( R=1kΩ ,  L=0.1 H ,
C=10μF ) which is powered by a sinusoidal source with frequency f =50 Hz .

The angular frequency is:
ω=2.π . f =314 rad / s

Then we can estimate the inductive and capacitive reactance:
X L=314×0.1=31.4Ω

X c=
1

314×10.10−6=
10−6

3140
=318Ω

The complex impedance is:
Z=1000+ j (31.4−318 )=1000− j 286,6=1040. e− j16 °Ω

From the above equation is also seen that the impedance is z=1040Ω  and the phase difference
is φ=−16 ° .
5.3.1.7 Parallel RLC circuit
Consider  the  parallel  RLC  circuit  presented  in  fig.  5.16,  powered  by  the  voltage  source
v (t )=V m . sin(ωt ) . The currents in the circuit are:

iR (t )=
v (t )

R
=v (t ) G=V m . sin(ωt )G

iL (t )=
1
L∫v (t ) . dt=

1
ωL

V m. sin (ωt−90 )

iC (t )=C
dv (t )

dt
=ωC.V m cos (ωt )

where G=
1
R

 is the conductance of the resistor in Siemens;

1
ωL

 is  the  inductive  susceptance,  which  is  the  reciprocal  of  the  inductive  reactance  in

Siemens;
ωC  is the capacitive susceptance in Siemens.

Fig. 5.16.

The above equations could be written with phasors as:
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V
•

=
V m

√2
e j0

=V

I
•

R=V
•

G

I
•

L=V
• 1
ωL

e− j90 °
=V

•

BL e
− j90°

I
•

C=V
•

ωCe j90 °=V
•

BC e j90 °

Then the total current coming from the source is:

I
•

=I
•

R+ I
•

L+ I
•

C=V
•

(G− j (BL−BC ))=V
•

(G− jB )=V
•

.Y

where B=BL−BC  is the susceptance of the circuit in Siemens.
Y=G− jB  is the complex admitance of the circuit in Siemens.

The complex admitance can also be presented as:
Y=G− jB= y . e− jφ

where y=√G2+B2  is the admitance of the circuit.
The vector diagram of the parallel RLC circuit could have three forms depending on the values of
BL  and BC  (fig. 5.17):

 If ωC<
1
ωL

 then the phase difference is positive φ>0  (fig. 5.17a);

 If  ωC=
1
ωL

then the susceptance  B  is zero and so is the phase difference:  φ=0

(fig. 5.17b).

 If ωC>
1
ωL

 then the phase difference is negative: φ<0  (fig. 5.17c);

a) b) c)

Fig. 5.17. Vector diagrams of a parallel RLC circuit: a) ωC<
1
ωL

 ; b) ωC=
1
ωL

 ; c)

ωC>
1
ωL

.

The situation when  ωC=
1
ωL

 is called parallel resonance and will be examined more closely

later.

From the vector diagrams it could be seen that the conductance, susceptance and admitance are
connected by the sides of a right triangle (fig. 5.18).
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Fig. 5.18.

5.3.2. Ohm’s and Kirchhoff’s laws
The main circuit laws in sinusoidal steady state have already been applied in the above analysis and
now they will be described in details.
Ohm’s law
Ohm’s law for sinusoidal circuits can be written for the RMS current I  and voltage V  and the
impedance of the circuit:

V=z . I
where the impedance is z=√R2+X2

In complex form Ohm’s law is:

V
•

=Z . I
•

where Z=R+ j (X L−XC )=R+ j(ωL−
1

ωC )  is the complex impedance of the branch.

Kirchhoff’s current law
Consider  the node presented in  fig.  5.19.  The instantaneaous values  of  the currents  are  related
according to Kirchhoff’s current law:

i1 (t )=i2 (t )+i3 (t )

Note that the above equation means that in every moment of time the total current/charge flow
through the node is 0. The above equation could be written with phasors as:

I
•

1=I
•

2+ I
•

3

Fig. 5.19.

In general form the KCL for any node in complex form is:

∑ I
•

IN=∑ I
•

OUT

Kirchhoff’s voltage law
Consider a series RLC circuit powered by a voltage source v (t )  with instantaneous values of the
current and the voltage drops (fig. 5.20):

i (t )=Im .sin (ωt )
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v R (t )=R . Im .sin (ωt)

v L (t )=L .
di (t )

dt
=ωL. Im. sin (ωt+90 ° )=ωL. Imcos (ωt )

vC (t )=
1
C

.∫ i (t ) . dt+uC (0 )=
1

ωC
Im . sin (ωt−90 )=

−1
ωC

Imcos (ωt )

Fig. 5.20.

The KVL for the loop is:

v (t )=R . Im . sin (ωt )+L.
di (t )

dt
+

1
C

.∫ i (t ) . dt+uC (0 )=Im(sin ( ωt ) R+cos (ωt )(ωL−
1

ωC ))
The above equation could be written in complex form as:

V
•

=V
•

R+V
•

L+V
•

C=I
•

(R+ j(ωL−
1

ωC ))=I
•

. Z

In the general case KVL could be written for any closed loop as:

∑V
•

SRCn
=∑ V

•

k=∑ I
•

k . Zk

where V
•

k
,  I

•

k
 and Zk  are the voltage drop, the current and the complex resistance of the

kth branch and V
•

SRC n

 is the nth voltage source.

5.3.3. Power in sinusoidal steady state circuits

5.3.3.1. Instantaneous and average power
Instantaneous power in a resistive circuit
Consider a purely resistive circuit powered by a sine source where the current and voltage drop of
the resistor are in phase (fig. 5.21):

i (t )=Im .sin (ωt )
v (t )=V m .R . sin(ωt)

Then the instantaneous power is:
p (t )=i (t ) . v (t )=ImV msin

2 (ωt )

Considering  sin2 (ωt )  is always positive so is  p (t ) ,  which can also be seen from the time
diagram. In other words the instantaneaous consumed power is always positive.
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Fig. 5.21.

The average power consumption of a resistor can be obtained through integration of p (t )  for one
waveform period:

PAVG=
1
T
∫
0

T

p ( t ) dt=
1
T
∫
0

T

ImV m sin2 (ωt )dt=
ImV m

2
PAVG  is non zero and this kind of power is called active or real power.

Instantaneous power in pure capacitive circuits

Consider the purely capacitive circuit in fig. 5.22 where the current and voltage are:
i (t )=Im sin (ωt)

v (t )=V m sin (ωt−90 ° )

Then the instantaneous power is:

p (t )=i ( t ) . v (t )=ImV m

−cos (2ωt−90 ° )

2
=

−ImV m

2
sin (2ωt )

Fig. 5.22

The average power consumption of the capacitor  can be obtained through integration over one
period T :

PAVG=
1
T
∫
0

T

p ( t ) dt=
1
T
∫
0

T
−ImV m

2
sin (2ωt ) dt=0

PAVG  is zero which means that the ideal capacitor does not consume power but simply stores it
as an electric field and later returns it back to the source. Such kind of power is called reactive
power.

Instantaneous power in pure inductive curcuits

Consider the purely inductive circuit in fig. 5.23 where the current and voltage are:
i (t )=Im .sin (ωt )

v (t )=V m . sin (ωt+90° )
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Then the instantaneous power is:

p (t )=i ( t ) . v (t )=ImV m

−cos (2ωt+90° )

2
=

ImV m

2
sin (2ωt )

Fig. 5.23

The average  power consumption  of  the  inductor  can  be obtained through integration  over  one
period T :

PAVG=
1
T
∫
0

T

p ( t ) dt=
1
T
∫
0

T

ImV m sin (2ωt ) dt=0

PAVG  is zero meaning that the ideal inductor does not consume power. It stores it as magnetic
energy and later returns it back. Once again this kind of energy is called reactive.

Instantaneaous power in series RLC circuit

Consider the series RLC circuit in fig. 5.24 where the current and voltage are:
v (t )=V m . sin (ωt )

i (t )=Im .sin (ωt−φ )

Fig. 5.24.

The instantaneous power is:
p (t )=i (t ) . v (t )=V m Imcos (φ ) sin2 (ωt )−V m Im sin (φ )sin (ωt ) cos (ωt )

The average power can be obtained through integration fir one cycle of the sinusoidal function:

PAVG=
1
T
∫
0

T

p (t ) dt=
V m

√2

Im

√2
cos (φ )=VI cos ( φ )

It can be seen that the average power has a maximum when φ=0 °  ( X=0 ) and a minimum
when φ=90 °  ( R=0 ).

The values  V=
V m

√2
 and  I=

Im

√2
 are  the effective (also called root  mean square or  RMS)

values of the voltage and current. They can also be estimated from the root mean square of the
halfcycle of a periodic wave (fig. 5.25):
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V=√V 1
2
+V 2

2
+…+V 12

2

12
For a sinusoidal waveform the above equation is:

V=
V m

√2

Fig. 5.25.

5.3.3.2. Active, reactive, apparent and complex power
As was earlier  demonstrated power consumed in resistors is  really  consumed and called active
power, while power consumed in reactive elements is only temporary stored and it’s called reactive.
Similarly to the resistance trangle the powers in a AC circuit are related by the sindes of a right
trianle (fig. 5.26).
The active power, measured in Watts [W] is:

P=V . I .cosφ
The reactive power, measured in VArs is:

Q=V . I . sinφ
S  is called the apparent power and is measured in VA:

S=V . I
The apparent power and the phase difference angle could be estiamted from the right triangle as
well:

S=√P2+Q2

φ=tan−1 Q
P

The phase different angle could be positive or negative and so can the reactive power while the
active power is always positive.

a) b)
Fig. 5.26. Power triangle for: a) inductive load; b) capacitive load.

The phasor describing the power triangle is called complex power and is equal to:

S
•

=P+ jQ=S .e jφ
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Similarly to the apparent power the complex power is measured in VA.

5.3.3.3. Conservatino of power in AC circuits

Following  the  conservation  of  energy  law  power  should  be  conserved  in  AC  circuits.  This
conservation is defined as:

∑ S
•

SRC=∑ S
•

CONS

where  S
•

SRC
 and  S

•

CONS
 are the cumulative complex powers of the sources and consumers

respectively. Since  S
•

=P+ jQ ,  the above equation could  also be written individually  for  the

active and reactive power in the circuit:
∑ PSRC=∑ PCONS

and 
∑QSRC=∑ QCONS

Power of the consumers
The active and reactive power for a certain branch of the circuit can be estimated respectively with:

P=I 2. RQ=I 2.(ωL−
1

ωC )
Power of the sources

Consider the current flow through a voltage source V
•

V
 is I

•

V
. Then the complex power of the

voltage source is:

S
•

V=V
•

V . I
*

I

where I
*

I  is the complex conjugate of the current:

I
•

V=IV . e jφ→I
*

I=IV . e− jφ

Next consider  the current  source  I
•

I
 with a voltage drop  U

•

I
.  The complex power of  the

votlage is:

S
•

I=V
•

I . I
*

I

5.3.3.4. Maximum active power transfer theorem for AC circuits
Consider a load Z LOAD=RLOAD+ j XLOAD  is powered through a AC circuit, whose Thevenin

equivallent is presented in fig. 5.27 where the Thevenin equivallent impedance is
ZTh=RTh+ j X Th .

Fig. 5.27. Thevenin equivallent circuit powering a load.

The complex current in the circuit is:

I
•

=
V
•

Th

ZLOAD+ZTh

=
V
•

Th

(RLOAD+RTh)+ j (X LOAD+XTh )
=

V
•

Th

ZEq
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The equivallent resistance Z Eq  can be presented in polar form as:

Z Eq=√ (RLOAD+RTh )
2
+( XLOAD+XTh )

2e
j atan

X LOAD+XTh

RLOAD+R Th =z . e jφ

where the phase difference is φ=atan
X LOAD+XTh

RLOAD+RTh
 and the impedance of the circuit is

z=√ (RLOAD+RTh )
2
+( XLOAD+XTh)

2 .
The active power reaching the load is:

P=V Th . I .cosφ=
V Th

2

√(RLOAD+RTh )
2
+(X LOAD+XTh )

2
cos φ

As can be seen from the above equation the two requirements to have maximal power are:
 cosφ  should have a maximum. This happens when:

cosφ=1→atan
X LOAD+XTh

RLOAD+RTh

=0→X LOAD=−XTh

 The denominator should have a minimum:

√ (RLOAD+RTh )
2
+( XLOAD+XTh )

2
=MIN

If  the reactive part  of  the denominator  is  removed ( X LOAD=−X Th  the denominator  becomes
lowest. Considering this is also a requirement for the maximum of  cosφ=1  we apply it and
obtain a purely resistive denominator:

√ (RLOAD+RTh )
2
+( XLOAD+XTh)

2
=√(RLOAD+RTh )

2
=RLOAD+RTh

We have already proven for DC circuit that for resistive circuits the power transfer is maximal if
RLOAD=RTh .  Then  the  active  power  reaching  the  load  is  maximal  when  the  complex  load

impedance equals the complex conjugate of the Thevenin’s complex impedance:

Z
•

LOAD=Z
*

Th

5.4. Analysis of circuits in sinusoidal steady state

5.4.1. Equivallent complex impedance
All the rules shown for resistive DC circuits apply for analysis of circuits in AC state. Consider the
circuit presented in fig. 5.28. The KVL is:

V
•

=V
•

1+V
•

2+V
•

3= (Z1+Z2+Z3 ) I
•

=Z IN I
•

In other words the series complex impedance is:
Z IN=∑ Zk

Fig. 5.28.

Next consider the circuit in fig. 5.29. The KCL could be written as:

17
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I
•

=I
•

1+ I
•

2+ I
•

3=
V
•

Z1

+
V
•

Z2

+
V
•

Z3

=V
•

( 1
Z1

+
1
Z2

+
1
Z3

)=V
• 1
Z¿

Fig. 5.29.

It can be seen that the equivalent parallel complex impedance is:

Z IN=
1

∑
1
Zk

=
1

∑Y k

where Y k=
1
Zk

 is the complex admittance of the k -th branch.

Example: Determine the input impedance for the circuit in fig. 5.30 if ω=100 rad /s .

Fig. 5.30.

The capacitive and inductive reactances in the circuit are:

X L1=ωL1=100Ω
X L2=ωL2=200Ω

XC 1=
1

ωC 1

=2Ω

XC 3=
1

ωC 3

=5Ω

The complex impedances of the three branches are:
Z1=R1+ j XL 1− j XC 1=10+ j100− j 2=10+ j 98Ω

Z2=R2+ j XL 2=7+ j200Ω
Z3=R3− j XC 3=1− j 5Ω

The input impedance of the circuit is:

Z IN=
Z1Z2

Z1+Z2

+Z3=
(10+ j98 ) (7+ j 200 )

10+ j 98+7+ j200
+1− j 5=6.26+ j 60.8Ω

5.4.2. Circuit analysis
The analysis of circuits in sinusoidal steady state includes the following steps:

1. Transfer the circuit to the phasor domain;

18
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2. Solve the problem using any of the DC circuit technics (Kirchhoff’s laws, nodal analysis,
mesh analysis, superposition, etc.);

3. Transfer the resulting phasor to the time domain.

The problem solving usually  includes  finding the currents and voltage drops  and verifying the
conservation of power.

5.4.2.1. Analysis using the Kirchhoff’s laws
This is the most universal method because it could be applied for nonlinear circuits as well. This
method includes writing a system of equations using the Kirchhoff’s laws using the following rules:

 The number of equations in the system is equal to the number of the unknown currents in
the circuit;

 The number of the KCL equations is equal to the number of nodes minus 1;
 The rest of the equations are according to the KVL.

Example: For the circuit in fig. 5.31 is known: v (t )=5sin (ωt+45 ° ) , i (t )=1.414 sin (ωt ) ,

R1=2Ω ,  ωL1=5Ω ,  
1

ωC1

=5Ω ,  R2=3Ω ,  
1

ωC2

=3Ω ,  R3=5 Ω .  Find  the

currents of the circuit and verify the conservation of power.

Fig. 5.31.

First we need to present the current and voltage source as complex effective values:

V
•

=
5
√2

e j45 °=3.54 e j45 °=2.5+ j2.5V

I
•

=
1.414
√2

e j0
=1 A

There are 2 unknown currents so we need a system of two equations:

| I
•

+ I
•

3=I
•

1

V
•

=I
•

3Z3+ I
•

1Z1

where Z1=R1+ j(ωL1−
1

ωC1
)=2+ j (5−5 )=2  and Z3=R3=5 .

The above system could be written in matrix form as:

[I
•

1

I
•

3
][1 −1
2 5 ]=[ 1

2.5+ j2.5]
The determinants are:

∆=1∗5+1∗2=7
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∆1=5+2.5+ j 2.5=7.5+ j 2.5
∆3=2.5+ j 2.5−2=0.5+ j2.5

The solution is:

I
•

1=
∆1

∆
=

7.5+ j2.5
7

=1.07+ j 0.36=1.13 e j18.6°

I
•

3=
∆3

∆
=

0.5+ j 2.5
7

=0.07+ j 0.36=0.37 e j79 °

In sinusoidal form the currents are:
i1 (t )=1.6 sin (ωt+18.6 ° )

i3 (t )=0.52 sin (ωt+79 ° )

Next we need to verify the conservation of power but first we need to find out the voltage drop

V
•

I
 on the current source. We could do that with a KVL for a loop through the current source:

V
•

=I
•

3Z3+V
•

I−I
•

Z2

where Z2=R2− j
1

ωC2

=3− j 3 .

Then the voltage drop V
•

I
 is:

V
•

I=V
•

+ I
•

Z2−I
•

3Z3=2.5+ j 2.5+1. (3− j3 )−5. (0.07+ j 0.36 )=5.15− j2.3
The power of the sources is:

S
•

SRC=V
•

I
*

3+V
•

I I
*

=(2.5+ j2.5 ) (0.07− j 0.36 )+(5.15− j 2.3 ) (1 )=
=0.175− j 0.9+ j 0.175+0.9+5.15− j2.3=6.225− j3.025VA

The power of the consumers is:

S
•

CONS=I 1
2. Z1+ I 2. Z2+ I 3

2 . Z3=1.132.2+12 . (3− j 3 )+0.372.5=2.55+3− j3+0.685=6.235− j 3VA

It can be seen that S
•

SRC ≈S
•

CONS
. The results do not much perfectly because of round ups.

5.4.2.2. Nodal analysis
The nodal analysis is based on the Kirchhoff’s current low. Since KCL is valid for phasors we can
analyze the circuit  by nodal analysis.  One of the nodes is  grounded and the unknowns are the
relative voltages of the other nodes.
Example: Analyze the circuit in fig. 5.32 and estimate the current through the inductor using nodal
analysis.

Fig. 5.32.

There are 3 nodes in the circuit and one of them is grounded. The other two nodal voltages are

named V
•

1
 and V

•

2
. The dependent voltage source equals three times the inductor drop V

•

L 1
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or:

3V
•

L 1=3V
•

1

We write two equations based on the KCL for nodes 1 and 2:

|
3+ j 1−V

•

1

5
=

V
•

1−V
•

2

− j3
+
V
•

1

j2

V
•

1−V
•

2

− j3
+

3V
•

1−V
•

2

1
=

V
•

2

− j2

→|
3+ j1

5
=V

•

1( 15 +
1
j2

+
1

− j3 )+V
•

2
1
j 3

0=V
•

1( 1
− j3

+3)+V
•

2( 1
j 3

−1+
1
j 2 )

Then we write the it in matrix form and estimate the determinants:

[V
•

1

V
•

2
] [0.2− j 0.167 j0.33

3+ j 0.33 −1− j 0.83]=[0.6+ j 0.2
0 ]

∆=(0.2− j 0.167 ) (−1− j 0.83 )−( j0.33 ) (3+ j0.33 )=−0.229− j0.99
∆1=(0.6+ j0.2 ) (−1− j 0.83 )=−0.434− j0.698
∆2=−(0.6+ j 0.2 ) (3+ j 0.33 )=−1.734− j 0.798

Then the node voltages are:

V
•

1=
∆1

∆
=

−0.434− j 0.698
−0.229− j0.99

=0.766− j 0.261

V
•

2=
∆2

∆
=

−1.734− j0.798
−0.229− j0.99

=1.15− j1.49

And the complex current through the inductor is:

I
•

L1=
V
•

1

j2
=

0.766− j 0.261
j 2

=−0.131− j 0.383

5.4.2.3. Mesh analysis
The meush analysis is based on the KVL and it should be used when there are many nodes. The idea
is to create enough loops which will go through all the elements of the circuit. 

Example: For the circuit in fig. 5.33 find the current I
•

L2
 using the mesh analysis method.

Fig. 5.33.

Since the mesh I
•

2
k  goes through a current source with the opposite direction it is:

I
•

2
k=−(1+ j3 ) A

Then we write the KVL for the other mesh currents:
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|0=I
•

1
k (2+ j2− j2 )+4 (I

•

1
k
+1+ j 3)+(3+ j1 )( I

•

2
k
−I

•

3
k)

−5=5 I
•

3
k
+(3+ j1 )( I

•

3
k
−I

•

1
k)− j1( I

•

3
k
+1+ j3)

or

| −4− j12=I
•

1
k (2+4+3+ j 1 )−I

•

3
k (3+ j 1 )

−5+ j 1−3=−I
•

1
k (3+ j 1 )+ I

•

3
k (5+3+ j1− j 1 )

The above equations can be written in matrix form:

[I
•

1
k

I
•

3
k ][ 9+ j1 −(3+ j1 )

−(3+ j1 ) 8 ]=[−4− j12
−8+ j 1 ]

The determinants are:
∆=72+ j 8−8− j6=64+ j 2

∆1=(−4− j 12 ) (8 )+ (3+ j 1 ) (−8+ j1 )=−57− j101
∆3=(9+ j1 ) (−8+ j 1 )−( 4+ j12 ) (3+ j 1 )=−73− j39

And the mesh currents are:

I
•

1
k
=

∆1

∆
=

−57+ j101
64+ j 2

=−0.939− j 1.549

I
•

3
k
=

∆3

∆
=

−73+ j39
64+ j 2

=−1.159− j 0.573

And the solution for I
•

L2
 is:

I
•

L2=I
•

1
k−I

•

3
k=−0.939− j1.549+1.159+ j0.573=0.22− j0.976

5.4.2.4. Thevenin and Norton equivallent circuits

Thevenin’s and  Norton’s theorems  could  be  applied  for  AC analysis  as  well.  The  equivallent
Thevenin  and  Norton  circuits  are  presented  in  fig.  5.34  where  ZTh=Z No  is  the  equivallent

complex impedance of the linear one-port and  V
•

Th
 and  I

•

No
 – the open circuit voltage and

short circuit current respectively. Z L  is the complex impedance of the load.

a)

b)
Fig. 5.34. Thevenin (a) and Norton (b) equivalent circuits.
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Example: For the circuit in fig. 5.35 estimate the current  I
•

L2
 using the Thevenin equivallent

circuit method.

Fig. 5.35.

First we find the input complex impedance where the load was by replacing the votlage source with
a short circuit and the current source with an open circuit (fig. 5.36):

ZTh=Zab=
(2+ j2− j 2+4 ) (5− j 1 )

2+ j 2− j 2+4+5− j1
=

30− j 8
11− j 1

=2.77− j 0.48Ω

Fig. 5.36.

Next we need to find the open circuit voltage with the load removed (fig. 5.37):

Fig. 5.37.

The KCL and KVL equations are:

I
•

2+1+ j3=I
•

1

5=I
•

1 (5+2+ j 2− j 2 )+ I
•

2 (4− j1 )

In matrix form the equations become:
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[I
•

1

I
•

2
][1 −1
7 4− j1]=[1+ j 3

5 ]
The determinants are:

∆=4− j1+7=11− j 1
∆1=4− j1+ j 12+3+5=12+ j 11

∆2=5−7− j21=−2− j 21
And the currents are:

I
•

1=
∆1

∆
=

12+ j11
11− j 1

=0.992+ j1.09

I
•

2=
∆2

∆
=

−2+ j 21
11− j1

=−0.008− j1.91

Then the open circuit voltage is:

5= (0.992+ j1.09 )5+(−0.008− j 1.91 ) (− j 1 )+V
•

Th

→V
•

Th=5−4.96− j 5.45−0.008 j+1.91=1.95− j 5.46
Then the load current in the equivallent Thevenin circuit is:

I
•

L2=
V
•

Th

ZTh+Z Load

=
1.95− j 5.46

2.77− j0.48+3+ j 1
=0.25− j0.97 A
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