Tutorial exercise in Theory of Electrical Engineering. Two-port networks analysis. Author: Assoc. Prof. Dr. Boris Evstatiev, University of Ruse Angel Kanchev.

TWO-PORT NETWORKS ANALYSIS

Problem 1. Obtain the hybrid (H) parameters of the two-port.

The system with the H parameters is:

$$
\left\lvert\, \begin{aligned}
& \dot{U}_{1}=H_{11} \dot{I_{1}}+H_{12} \dot{U}_{2} \\
& \dot{I}_{2}=H_{21} \dot{I}_{1}+H_{22} \dot{U}_{2}
\end{aligned}\right.
$$

In order to obtain them we need to analyze the circuit once for $I_{1}=0$ and once for $U_{2}=0$.

For $I_{1}=0$ the system of H equations becomes:

$$
\left|\begin{array}{l}
U_{1}=H_{11} I_{1}+H_{12} U_{2} \\
I_{2}=H_{21} I_{1}+H_{22} U_{2}
\end{array} \rightarrow\right| \begin{aligned}
& U_{1}=0+H_{12} U_{2} \\
& I_{2}=0+H_{22} U_{2}
\end{aligned}
$$

Then two of the hybrid parameters are:

$$
H_{12}=\frac{U_{1}}{U_{2}} H_{22}=\frac{I_{2}}{U_{2}}
$$

For $U_{2}=0$ the system becomes:

$$
\left|\begin{array}{l}
U_{1}=H_{11} I_{1}+H_{12} U_{2} \\
I_{2}=H_{21} I_{1}+H_{22} U_{2}
\end{array} \rightarrow\right| \begin{aligned}
& U_{1}=H_{11} I_{1}+0 \\
& I_{2}=H_{21} I_{1}+0
\end{aligned}
$$

and the other two parameters are:

$$
H_{11}=\frac{U_{1}}{I_{1}} H_{21}=\frac{I_{2}}{I_{1}}
$$

Let us first examine the two port with an open circuit at the input ($I_{1}=0$), and power its output with a voltage source U_{2}. The equivalent circuit is:

Tutorial exercise in Theory of Electrical Engineering. Two-port networks analysis. Author: Assoc. Prof. Dr. Boris Evstatiev, University of Ruse Angel Kanchev.

We need to obtain U_{1} and I_{2} (U_{2} is already known). R_{1} and R_{2} are connected in series, so their equivalent resistance is:

$$
R_{12}=R_{1}+R_{2}=4+4=8[\Omega]
$$

R_{12} is connected in parallel to the ideal source U_{2} so the current I_{3} would be:

$$
I_{3}=\frac{U_{2}}{R_{12}}=\frac{U_{2}}{8}
$$

Since U_{1} is the voltage drop on R_{1} we have:

$$
U_{1}=R_{1} I_{3}=4 I_{3}=4 \frac{U_{2}}{8}=0,5 U_{2}
$$

The equivalent resistance of all resistors is:

$$
R_{123}=\frac{R_{12} \cdot R_{3}}{R_{12}+R_{3}}=\frac{8.8}{8+8}=4[\Omega]
$$

Then the current $\quad I_{2}$ is:

$$
I_{2}=\frac{U_{2}}{R_{123}}=0,25 U_{2}
$$

Now we can obtain two of the hybrid parameters:

$$
H_{12}=\frac{U_{1}}{U_{2}}=\frac{0,5 U_{2}}{U_{2}}=0,5 \quad H_{22}=\frac{I_{2}}{U_{2}}=\frac{0,25 U_{2}}{U_{2}}=0,25[\mathrm{~S}]
$$

Next we'll analyze the two-port with a short circuit at the output ($U_{2}=0$):

The voltage $\quad U_{1}$ is known and we need to obtain I_{1} and I_{2}. The resistor R_{3} is shunted by the short circuit, so in the circuit remain only R_{1} and R_{2}. We can write the following KVL equation:

$$
U_{1}=-R_{2} \cdot I_{2} \quad \rightarrow \quad U_{1}=-4 I_{2} \quad \rightarrow \quad I_{2}=\frac{-1}{4} U_{1}=-0,25 U_{1}
$$

The equivalent resistance seen from the voltage source is:

$$
R_{12}=\frac{R_{1} \cdot R_{2}}{R_{1}+R_{2}}=2[\Omega]
$$

According to Ohm's law the current $\quad I_{1}$ is:

Tutorial exercise in Theory of Electrical Engineering. Two-port networks analysis. Author: Assoc. Prof. Dr. Boris Evstatiev, University of Ruse Angel Kanchev.

$$
I_{1}=\frac{U_{1}}{R_{12}}=\frac{1}{2} U_{1}=0,5 U_{1}
$$

Then the other two hybrid parameters are:

$$
H_{11}=\frac{U_{1}}{I_{1}}=\frac{U_{1}}{0,5 U_{1}}=2[\Omega] H_{21}=\frac{I_{2}}{I_{1}}=\frac{-0,25 U_{1}}{0,5 U_{1}}=-0,5
$$

and the H parameters of the two-port are:

$$
H=\left[\begin{array}{cc}
2[\Omega] & 0,5 \\
-0,5 & 0,25[S]
\end{array}\right]
$$

Problem 2. Obtain the Z parameters of the two-port.

The system with the Z parameters is:

$$
\left\lvert\, \begin{aligned}
& \dot{U}_{1}=Z_{11} \dot{I}_{1}+Z_{12} \dot{I}_{2} \\
& \dot{U}_{2}=Z_{21} \dot{I}_{1}+Z_{22} \dot{I}_{2}
\end{aligned}\right.
$$

So we need to solve the system for $I_{1}=0$ and for $I_{2}=0$.
For $I_{1}=0$ from the system with the Z parameters we obtain two of them:

$$
\begin{array}{lll}
U_{1}=Z_{11} I_{1}+Z_{12} I_{2}=0+Z_{12} I_{2} & \rightarrow & Z_{12}=\frac{U_{1}}{I_{2}} \\
U_{2}=Z_{21} I_{1}+Z_{22} I_{2}=0+Z_{22} I_{2} & \rightarrow & Z_{22}=\frac{U_{2}}{I_{2}}
\end{array}
$$

For $I_{2}=0$ we obtain the other two parameters:

$$
\begin{array}{lll}
U_{1}=Z_{11} I_{1}+Z_{12} I_{2}=Z_{11} I_{1}+0 & \rightarrow & Z_{11}=\frac{U_{1}}{I_{1}} \\
U_{2}=Z_{21} I_{1}+Z_{22} I_{2}=Z_{21} I_{1}+0 & \rightarrow & Z_{21}=\frac{U_{2}}{I_{1}}
\end{array}
$$

Let's first examine the two-port with an open circuit at the output ($I_{2}=0$) when the input is powered by a current source I_{1} :

Tutorial exercise in Theory of Electrical Engineering. Two-port networks analysis. Author: Assoc. Prof. Dr. Boris Evstatiev, University of Ruse Angel Kanchev.

We need to obtain U_{1} and U_{2}. The resistors R_{3} and R_{4} are connected in series and then in parallel to R_{2}, so their equivalent resistance is:

$$
R_{234}=\frac{R_{2} \cdot\left(R_{3}+R_{4}\right)}{R_{2}+R_{3}+R_{4}}
$$

The voltage drop on R_{234} is:

$$
U_{234}=I_{1} R_{234}=I_{1} \frac{R_{2} \cdot\left(R_{3}+R_{4}\right)}{R_{2}+R_{3}+R_{4}}
$$

and the currents $\quad I_{3}$ and I_{4} are:

$$
\begin{aligned}
& I_{3}=\frac{U_{234}}{R_{2}}=I_{1} \frac{R_{2} \cdot\left(R_{3}+R_{4}\right)}{R_{2}+R_{3}+R_{4}} \cdot \frac{1}{R_{2}}=I_{1} \frac{8+4}{12+8+4}=0,5 I_{1} \\
& I_{4}=\frac{U_{234}}{R_{3}+R_{4}}=I_{1} \frac{R_{2} \cdot\left(R_{3}+R_{4}\right)}{R_{2}+R_{3}+R_{4}} \cdot \frac{1}{\left(R_{3}+R_{4}\right)}=I_{1} \frac{12}{12+8+4}=0,5 I_{1}
\end{aligned}
$$

To obtain the voltages U_{1} and U_{2} we write two KVL equations:

$$
\begin{aligned}
& U_{1}=R_{1} I_{1}+R_{2} I_{3}=2 I_{1}+12 I_{3}=2 I_{1}+12.0,5 I_{1}=8 I_{1} \\
& U_{2}=R_{4} I_{4}=4 I_{4}=4.0,5 I_{1}=2 I_{1}
\end{aligned}
$$

Then two of the Z parameters are:

$$
Z_{11}=\frac{U_{1}}{I_{1}}=\frac{8 I_{1}}{I_{1}}=8[\Omega] \quad Z_{21}=\frac{U_{2}}{I_{1}}=\frac{2 I_{1}}{I_{1}}=2[\Omega]
$$

Next we'll analyze the circuit for open circuit at the input ($I_{1}=0$) with a current source I_{2} at the output:

$$
\left\lvert\, \begin{gathered}
I_{2}=I_{3}+I_{4} \\
0=(8+12) I_{3}-4 I_{4}
\end{gathered} \rightarrow\left[\begin{array}{l}
I_{3} \\
I_{4}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
20 & -4
\end{array}\right]=\left[\begin{array}{c}
I_{2} \\
0
\end{array}\right]\right.
$$

Tutorial exercise in Theory of Electrical Engineering. Two-port networks analysis. Author: Assoc. Prof. Dr. Boris Evstatiev, University of Ruse Angel Kanchev.

The determinants are:

$$
\begin{aligned}
& \Delta=\left[\begin{array}{cc}
1 & 1 \\
20 & -4
\end{array}\right]=-4-20=-24 \\
& \Delta_{3}=\left[\begin{array}{cc}
I_{2} & 1 \\
0 & -4
\end{array}\right]=-4 I_{2} \\
& \Delta_{4}=\left[\begin{array}{cc}
1 & I_{2} \\
20 & 0
\end{array}\right]=-20 I_{2}
\end{aligned}
$$

And the currents are:

$$
\begin{aligned}
& I_{3}=\frac{\Delta_{3}}{\Delta}=\frac{-4 I_{2}}{-24}=0,167 I_{2} \\
& I_{3}=\frac{\Delta_{3}}{\Delta}=\frac{-20 I_{2}}{-24}=0,83 I_{2}
\end{aligned}
$$

To obtain U_{1} and U_{2} we write 2 KVL equations:

$$
\begin{aligned}
& U_{1}=R_{1} I_{1}+R_{2} I_{3}=2 I_{1}+12 I_{3}=0+12 \cdot 0,1667 I_{2}=2 I_{2} \\
& U_{2}=R_{4} I_{4}=4 I_{4}=4 \cdot 0,8333 I_{2}=3,33 I_{2}
\end{aligned}
$$

Now we can obtain the other two Z parameters:

$$
Z_{12}=\frac{U_{1}}{I_{2}}=\frac{2 I_{2}}{I_{2}}=2[\Omega] \quad Z_{22}=\frac{U_{2}}{I_{2}}=\frac{3,33 I_{2}}{I_{2}}=3,33[\Omega]
$$

To summer, the Z parameters of the two-port are:

$$
Z=\left|\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right|=\left|\begin{array}{cc}
8[\Omega] & 2[\Omega] \\
2[\Omega] & 3,33[\Omega]
\end{array}\right|
$$

Problem 3. Obtain the current and power of the load R_{L}, if the two-port is defined with its hybrid parameters: $H=\left[\begin{array}{cc}100[\Omega] & 0,01 \\ 10 & 200[m S]\end{array}\right]$.

First we write a system of equations using Kirchoff's laws:

$$
\left\lvert\, \begin{gathered}
6=3 I_{1}+U_{1} \\
0=U_{2}+10 I_{2}
\end{gathered}\right.
$$

Tutorial exercise in Theory of Electrical Engineering. Two-port networks analysis. Author: Assoc. Prof. Dr. Boris Evstatiev, University of Ruse Angel Kanchev.

We know that the system of hybrid equations is:

$$
\left|\begin{array}{l}
\dot{U}_{1}=H_{11} \dot{I}_{1}+H_{12} \dot{U}_{2} \\
\dot{I}_{2}=H_{21} \dot{I}_{1}+H_{22} \dot{U}_{2}
\end{array} \rightarrow\right| \begin{aligned}
& U_{1}=100 I_{1}+0,01 U_{2} \\
& I_{2}=10 I_{1}+0,200 U_{2}
\end{aligned}
$$

We substitute the last equations in our system and obtain:

$$
\left.\left|\begin{array}{c}
6=3 I_{1}+U_{1} \\
0=U_{2}+10 I_{2}
\end{array} \rightarrow\right| \begin{gathered}
6=3 I_{1}+100 I_{1}+0,01 U_{2} \\
0=U_{2}+10\left(10 I_{1}+0,2 U_{2}\right)
\end{gathered} \rightarrow \right\rvert\, \begin{gathered}
6=103 I_{1}+0,01 U_{2} \\
0=3 U_{2}+100 I_{1}
\end{gathered}
$$

In matrix form:

$$
\left[\begin{array}{c}
I_{1} \\
U_{2}
\end{array}\right]\left[\begin{array}{cc}
103 & 0,01 \\
100 & 3
\end{array}\right]=\left[\begin{array}{l}
6 \\
0
\end{array}\right]
$$

The determinants are:

$$
\begin{aligned}
& \Delta=\left[\begin{array}{cc}
103 & 0,01 \\
100 & 3
\end{array}\right]=103.3-100.0,01=308 \\
& \Delta_{2}=\left[\begin{array}{ll}
103 & 6 \\
100 & 0
\end{array}\right]=0-6.100=-600
\end{aligned}
$$

Then the load voltage is:

$$
U_{2}=\frac{\Delta_{2}}{\Delta}=\frac{-600}{308}=-1,95[\mathrm{~V}]
$$

Finally the current and power of the load are:

$$
\begin{aligned}
& 0=U_{2}+10 I_{2} \quad \rightarrow \quad I_{2}=\frac{-U_{2}}{R_{T}}=\frac{-(-1,95)}{10}=195[\mathrm{~mA}] \\
& P_{R L}=U_{2}\left(-I_{2}\right)=(-1,95) \cdot\left(-195 \cdot 10^{-3}\right)=0,38[\mathrm{~W}]
\end{aligned}
$$

Problem 4. Obtain the current and power of the load R_{L}, if the two-port is defined with its Z parameters: $Z=\left[\begin{array}{cc}8[\Omega] & -3[\Omega] \\ -4[\Omega] & 9[\Omega]\end{array}\right]$.

First we are going to write a system of equations:

Tutorial exercise in Theory of Electrical Engineering. Two-port networks analysis. Author: Assoc. Prof. Dr. Boris Evstatiev, University of Ruse Angel Kanchev.

$$
\left\lvert\, \begin{gathered}
2=I_{1}+I_{3} \\
U_{2}=-8 I_{2} \\
U_{1}=4 I_{3}-3 I_{1}
\end{gathered}\right.
$$

The system of Z equations is:

$$
\left|\begin{array}{l}
\cdot \dot{U}_{1}=Z_{11} \dot{I}_{1}+Z_{12} \dot{I}_{2} \\
\dot{U}_{2}=Z_{21} \dot{I}_{1}+Z_{22} \dot{I}_{2}
\end{array} \rightarrow\right| \begin{gathered}
U_{1}=8 I_{1}-3 I_{2} \\
U_{2}=-4 I_{1}+9 I_{2}
\end{gathered}
$$

Then our system of Kirchoff's laws equations becomes:

$$
\left.\left|\begin{array}{c}
2=I_{1}+I_{3} \\
U_{2}=-8 I_{2} \\
U_{1}=4 I_{3}-3 I_{1}
\end{array} \rightarrow\right| \begin{gathered}
2=I_{1}+I_{3} \\
-4 I_{1}+9 I_{2}=-8 I_{2} \\
8 I_{1}-3 I_{2}=4 I_{3}-3 I_{1}
\end{gathered} \rightarrow \right\rvert\, \begin{gathered}
2=I_{1}+I_{3} \\
0=4 I_{1}-17 I_{2} \\
0=3 I_{2}+4 I_{3}-11 I_{1}
\end{gathered}
$$

In matrix form:

$$
\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
4 & -17 & 0 \\
-11 & 3 & 4
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]
$$

The determinants are:

$$
\begin{aligned}
& \Delta=\left[\begin{array}{ccc}
1 & 0 & 1 \\
4 & -17 & 0 \\
-11 & 3 & 4
\end{array}\right]=-68+12-187=-234 \\
& \Delta_{2}=\left[\begin{array}{ccc}
1 & 2 & 1 \\
4 & 0 & 0 \\
-11 & 0 & 4
\end{array}\right]=-32
\end{aligned}
$$

Then the load current is:

$$
I_{2}=\frac{\Delta_{2}}{\Delta}=\frac{-32}{-234}=0,14[A]
$$

and the power dissipated by the load is:

$$
P_{R L}=I_{2}^{2} R_{T}=0,14^{2} \cdot 8=0,15[W]
$$

