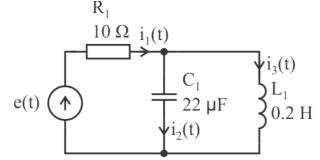
Homework in Theory of Electrical Engineering. Sinusoidal steady state circuits analysis. University of Ruse Angel Kanchev. HOMEWORK №2.

Problem 1. Present the sinusoidal waveforms as phasors (5 points):

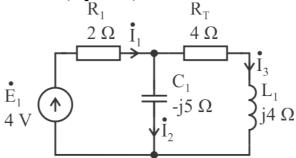
- 1) $i_1(t) = 0.2 \sin(\omega t + 25^{\circ})[A]$
- 2) $u_1(t) = 220 \sin(\omega t 180^\circ) [V]$
- 3) $i_2(t) = -10\sin(\omega t + 180^\circ)[A]$
- 4) $i_3(t) = 2\sin(\omega t 45^\circ)[A]$
- 5) $u_2(t) = 12\sin(\omega t)[V]$

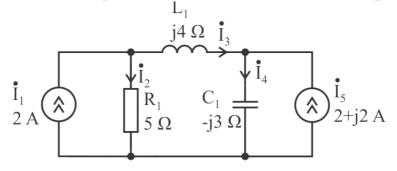

Problem 2. Obtain the sinusoids of the phasors (5 points):

- 1) $I_1 = 0.25 e^{j30^{\circ}} [A]$ 2) $I_2 = 7 e^{-j105^{\circ}} [A]$ 3) $U_1 = 25 + j11 [V]$ 4) $U_2 = -5 - j1.25 [V]$
- 5) $I_3 = 1,5[A]$

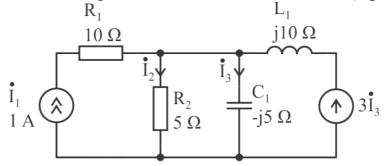
Problem 3. Obtain the reactances (reactive resistance) of the conductors/capacitors (**5 points**):

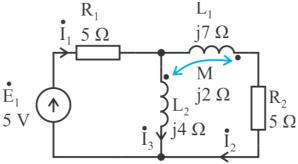
1)	$L_1 = 100 mH$	at frequency	f = 60 Hz
2)	$C_1 = 22mF$	at frequency	f = 200 Hz
3)	$L_2 = 300 \mu H$	at frequency	f = 20 kHz
4)	$C_2 = 2,2 \mu F$	at frequency	f = 300 kHz
5)	$C_{3} = 2,2 \mu F$	at frequency	f = 10 MHz


Problem 4. The circuit below is powered by a sinusoidal source $e(t)=2\sin(\omega t+90^{\circ})[V]$ with frequency f=50 Hz:


- 1) Obtain the reactances and create an equivalent circuit with complex numbers (**3 points**);
- 2) Obtain the complex currents in the circuit (5 points);
- 3) Present the currents in sinusoidal form (2 points).

Homework in Theory of Electrical Engineering. Sinusoidal steady state circuits analysis. University of Ruse Angel Kanchev.


Problem 5. In the circuit below the quantities are presented in complex form. Obtain the complex currents (**5 points**).


Problem 6. Obtain the complex currents in the circuit below (5 points).

Problem 8. Obtain the complex currents in the circuit below (5 points).

Problem 8. For the circuit below draw an equivalent circuit with dependent sources (without mutually coupled inductors). Obtain the complex currents (**5 points**).

