LABORATORY EXERCISE 4

Frequency response in resonant circuits.

Goal of the lab: To demonstrate the series and parallel resonance phenomenons in electric circuits.

1. Required equipment

Equipment	Count
Breadboard	1 pc.
A set of connecting wires	1 pc.
Function generator	1 pc.
Two channel oscilloscope	1 pc.
Inductor 290 µH	1 pc.
Capacitor 100 nF	1 pc.
Resistor 100 Ω, 5 W	1 pc.

2. Introduction

The reactances of inductors and capacitors in steady-state sinusoidal circuits depend on the frquency:

$$X_{C} = \frac{1}{\omega . C}$$
$$X_{L} = \omega . L$$

where $\omega = 2.\pi f$ is the angular frequency in $rad.s^{-1}$, *C* and *L* are respectively the capacitance of the capacitor in *F*, and the inductance of the coil in *H*. The complex impedance *Z* of a series RLC circuit (Fig. 1) is:

$$Z(\omega) = R + j\omega L - j\frac{1}{\omega C} = R + j(X_L - X_C)$$
$$u \downarrow \stackrel{C}{\underset{U_C}{\longrightarrow}} \stackrel{L}{\underset{U_L}{\longrightarrow}} \stackrel{R}{\underset{U_R}{\longrightarrow}}$$

Fig. 1. Series RLC circuit.

The situation when $X_L = X_C$ (or $\omega \cdot L = \frac{1}{\omega \cdot C}$) is called series resonance and it occurs at the resonant frequency ω_0 :

$$\omega_0 = \frac{1}{\sqrt{L \cdot C}}$$

Under these conditions, the complex impedance is entirely active:

$$Z(\omega) = R + j(X_L - X_C) = R$$

i.e. the inductor and capacitor together are a short circuit, therefore the current in the circuit has a maximum (Fig. 2a):

$$I_{MAX} = \frac{U}{Z(\omega_0)} = \frac{U}{R}$$

For the same reaons, during series resonance, the phase difference φ of the circuit is 0° (Fig. 2b):

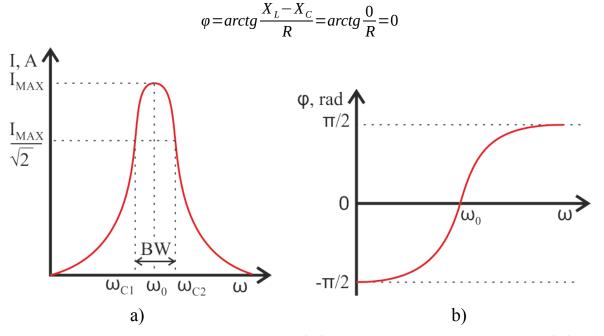


Fig. 2. Frequency response of the current $I(\omega)$ (a) and the phase difference $\varphi(\omega)$ (b) in a series RLC circuit.

Similarly, the complex admitance of a parallel RLC circuit (Fig. 3) is:

$$Y = \frac{1}{R} - j \left(\frac{1}{\omega \cdot L} - \omega \cdot C \right) = \frac{1}{R} - j \left(B_L - B_C \right)$$

Fig. 3. Paralel RLC circuit.

In this case a parallel resonance could occur, if the following condition is met: $B_L = B_C$ (or $\frac{1}{\omega . L} - \omega . C$); therefore, the condition is the same as in series resonance. When parallel resonance occurs, the complex admitance of the circuit becomes entirely active:

$$Y = \frac{1}{R} - j \left(B_L - B_C \right) = \frac{1}{R}$$

therefore the currents i_L and i_C through the inductor and the capacitor are equal, but with opposite directions, i.e.:

 $i_{L} + i_{C} = 0$

This means that the whole input current i will go through the resistor:

$$=i_R+i_L+i_C=i_R$$

If there is no parallel resistor (parallel RL circuit), the parallel resonance acts as an open circuit and no current will flow.

3. Tasks

<u>**Task 1.**</u> Investigate the series resonance for the circuit in Fig. 4, with the following elements: C=100 nF, $L=290 \mu H$ and $R=100 \Omega$.

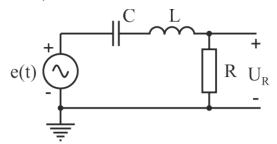


Fig. 4. Circuit for investigation of series resonance.

Step 1. Connect the circuit from Fig. 4 on the breadboard. Connect one of the oscilloscope probes to the source and the other to the resistor.

Step 2. For each frequency in the report:

- Using the oscilloscope readings, set the amplitude of the input voltage to U_{m.in}=2V;
- Measure the amplitude value U_{mR} of the voltage drop on the resistor;
- Estimate the amplitude of the current using Ohm's law:

$$I_{mR} = \frac{U_{mR}}{R}$$

 Measure the phase difference t_φ between the input voltage and the current (the resistor voltage) in seconds (Fig. 5);

Note: If u_{in} leads u_R , the phase difference t_{φ} is positive (Fig. 5a). Otherwise, it is negative (Fig. 5b).

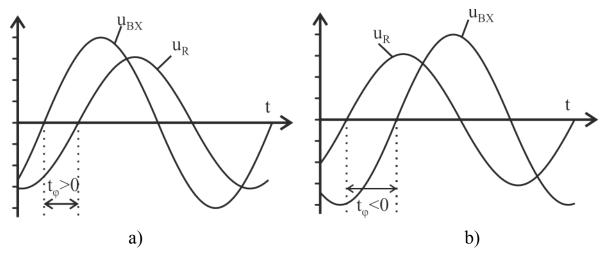


Fig. 5. Measurement of the phase difference in seconds: a) $t_{\varphi} > 0$; b) $t_{\varphi} < 0$.

• Estimate the phase difference *φ* in degrees:

$$\varphi = \frac{360.t_{\varphi}}{T} = 360.t_{\varphi}.f$$

Step 3. Draw the frequency response $I_{mR}(f)$.

• Estimate the amplitude of the current, for which only half of the maximal power is consumed:

$$I_{0,5P} = \frac{I_{MAX}}{\sqrt{2}}$$

- Draw the current $I_{0,5P}$ and graphically obtain the cut-off frequencies f_{C1} and f_{C2} , as shown in Fig. 2a.
- Estimate the bandwidth of the circuit:

$$BW = f_{C2} - f_{C1}$$

• Estiamte the quality factor *Q* of the circuit:

$$Q = \frac{f_0}{BW}$$

Step 4. Draw the frequency response $\varphi(f)$.

<u>Task 2.</u> Investigate the parallel resonance for the circuit in Fig. 6, using the following elements: C=100 nF, $L=290 \mu H$ and $R=100 \Omega$.

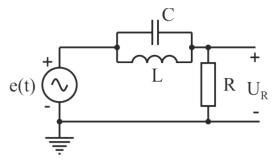


Fig. 6. Circuit for investigation of parallel resonance.

Step 1. Connect the circuit from Fig. 6 on the breadboard. Connect one of the oscilloscope probes to the source and the other to the resistor.

Step 2. For each frequency in the report:

- Using the oscilloscope readings, set the amplitude of the input voltage to U_{m.in}=2V;
- Measure the amplitude value U_{mR} of the voltage drop on the resistor;
- Estimate the amplitude of the current using Ohm's law:

$$I_{mR} = \frac{U_{mR}}{R}$$

Step 3. Draw the frequency response $I_{mR}(f)$.

• Estimate the amplitude of the current, for which only half of the maximal power is consumed:

$$I_{0,5P} = \frac{I_{MAX}}{\sqrt{2}} = \frac{\frac{U_{m.ex}}{R}}{\sqrt{2}}$$

- Draw the current $I_{0,5P}$ and graphically obtain the cut-off frequencies f_{C1} and f_{C2} , as shown in Fig. 2a.
- Estimate the bandwidth of the circuit:

$$BW = f_{C2} - f_{C1}$$

• Estiamte the quality factor *Q* of the circuit:

$$Q = \frac{f_0}{BW}$$

4. Questions

1. What is the reason for the frequency response of circuits with inductors and capacitors?

2. What happens when series resonance occurs?

3. What happens when parallel resonance occurs?