Tutorial exercise in Theory of Electrical Engineering. DC steady state circuit analysis. Author: Assoc. Prof. Dr. Boris Evstatiev, University of Ruse Angel Kanchev.

DC STEADY STATE CIRCUIT ANALYSIS

1. Introduction

The basic quantities in electric circuits are current, voltage and resistance. They are related with Ohm's law. For a passive branch the current is:

$$
I=\frac{U_{a b}}{R}=\frac{U_{a}-U_{b}}{R}
$$

where U_{a} and U_{b} are the node voltages (potentials) of nodes \mathbf{a} and \mathbf{b}.
For an active branch, where the voltage source E_{1} has the same direction as the current flow I, Ohm's law has the following form:

$$
I=\frac{U_{a}-U_{b}+E_{1}}{R}=\frac{U_{a b}+E_{1}}{R}
$$

Kirchoff's current law (KCL) refers to a node (junction) in the circuit and says: the sum of the currents entering the node is equal to the sum of the currents leaving it:

$$
\sum I_{\mathrm{IN}}=\sum I_{O U T}
$$

Kirchoff's voltage law (KVL) refers to a loop in the circuit and says: the algebraic sum of the voltage drops in every closed loop equals zero:

$$
\sum U_{k}=0
$$

However usually it's more convenient to write it down as: the algebraic sum of the voltage sources in a closed loop is equal to the algebraic sum of the voltage drops in the loop:

$$
\sum E_{k}=\sum U_{k}=\sum I_{k} R_{k}
$$

Actually Ohm's law is a private case of KVL.
Power in DC electric circuits is estimated according to:

$$
P=U . I
$$

If in the above equation we substitute Ohm's law, the power could also be expressed as:

$$
P=I^{2} \cdot R \quad P=\frac{U^{2}}{R}
$$

For every electric circuits is in force the conservation of power: The sum of the power of the sources is equal to the sum of the power of the consumers:

$$
\sum P_{S R C}=\sum P_{\text {CONS }}
$$

2. Problems

Problem 1. Determine current, voltage, power and resistance of the resistor, for the following cases:
a) The current flow through the resistor $R_{1}=100 \Omega$ is $I_{1}=10 \mathrm{~A}$;
b) The voltage drop on the resistor $R_{2}=50 \Omega$ is $U_{2}=25 \mathrm{~V}$;
c) The dissipated power by the resistor $R_{3}=120 \Omega$ is $P_{3}=1 \mathrm{~W}$;

Tutorial exercise in Theory of Electrical Engineering. DC steady state circuit analysis.
Author: Assoc. Prof. Dr. Boris Evstatiev, University of Ruse Angel Kanchev.
d) The current and dissipated power by the resistor are $I_{4}=1 \mathrm{~A}$ and $P_{4}=1 \mathrm{~W}$;
e) The voltage drop and dissipated power of the resistor are $U_{5}=12 \mathrm{~V}$ and $P_{5}=2 \mathrm{~W}$.

Solutions:

a) According to Ohm's law the voltage drop is:

$$
U_{1}=I_{1} R_{1}=10.100=1000[V]
$$

Then the dissipated power is:

$$
P_{1}=U_{1} I_{1}=10.1000=10000=10[\mathrm{~kW}]
$$

b) According to Ohm's law, the current is:

$$
I_{2}=\frac{U_{2}}{R_{2}}=\frac{25}{50}=0,5[\mathrm{~A}]
$$

Then the dissipated power is:

$$
P_{2}=U_{2} I_{2}=25 \cdot 0,5=12,5[\mathrm{~W}]
$$

c) The current can be obtained from the power:

$$
P_{3}=I_{3}^{2} R_{3} \rightarrow I_{3}^{2}=\frac{P_{3}}{R_{3}} \rightarrow I_{3}=\sqrt{\frac{P_{3}}{R_{3}}}=\sqrt{\frac{1}{120}}=0,091=91[\mathrm{~mA}]
$$

Then the voltage drop is:

$$
U_{3}=I_{3} R_{3}=0,091.120=11[\mathrm{~V}]
$$

d) We can estimate the resistance from the power:

$$
P_{4}=I_{4}^{2} R_{4} \quad \rightarrow \quad R_{4}=\frac{P_{4}}{I_{4}^{2}}=\frac{1}{1^{2}}=1[\Omega]
$$

The voltage drop is estimated according to Ohm's law:

$$
U_{4}=I_{4} R_{4}=1.1=1[V]
$$

e) The current is estimated from the power law:

$$
P_{5}=I_{5} U_{5} \quad \rightarrow \quad I_{5}=\frac{P_{5}}{U_{5}}=\frac{2}{12}=0,167[\mathrm{~A}]
$$

Then the resistance is:

$$
R_{5}=\frac{U_{5}}{I_{5}}=\frac{12}{0,167}=72[\Omega]
$$

Task 2. Obtain the equivalent resistance R_{IN} and estimate what power will be dissipated in the circuit if it is powered with voltage $U=2 V$.

Tutorial exercise in Theory of Electrical Engineering. DC steady state circuit analysis. Author: Assoc. Prof. Dr. Boris Evstatiev, University of Ruse Angel Kanchev.

We begin to simplify the circuit, by merging parallel and series resistors. $\quad R_{4}$ and R_{5} are connected in series, so we can combine them:

$$
R_{45}=R_{4}+R_{5}=1+9=10 \Omega
$$

Now we can create an equivalent circuit:

Next R_{3} and R_{45} are connected in parallel, so their equivalent resistance is:

$$
R_{345}=\frac{R_{3} R_{45}}{R_{3}+R_{45}}=\frac{10.10}{10+10}=5 \Omega
$$

We create a new equivalent circuit:

There we have 3 resistors in series:

$$
R_{B X}=R_{1}+R_{2}+R_{345}=4+7+5=16 \Omega
$$

If we power the circuit with voltage $U=2 V$, the input current is:

$$
I=\frac{U}{R_{B X}}=\frac{2}{16}=0,125[\mathrm{~A}]
$$

Then the power, dissipated in the circuit, is:

$$
P=U . I=2 \cdot 0,125=0,25[W]
$$

Task 3. Obtain the branch currents in the circuit using the Kirchoff's laws and verify the conservation of power.

Tutorial exercise in Theory of Electrical Engineering. DC steady state circuit analysis. Author: Assoc. Prof. Dr. Boris Evstatiev, University of Ruse Angel Kanchev.

The circuit has three unknown currents (the $4^{\text {th }}$ one is known because there is a current source), so we need a system of three equations. The circuit has two nodes, so we can write 1 equation using KCL and 2 equation using KVL :

We write the system of equations in matrix form:

$$
\left|\begin{array}{l||ccc}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right| \begin{array}{ccc}
-1 & 1 & 1 \\
3 & 5 & 0 \\
0 & -5 & 3
\end{array}\left|=\left|\begin{array}{l}
1 \\
4 \\
0
\end{array}\right|\right.
$$

The determinants are:

$$
\begin{aligned}
& \Delta=\left|\begin{array}{ccc}
-1 & 1 & 1 \\
3 & 5 & 0 \\
0 & -5 & 3
\end{array}\right|=-1 \cdot 5 \cdot 3-1 \cdot 5 \cdot 3-1 \cdot 3 \cdot 3=-39 \\
& \Delta_{1}=\left|\begin{array}{ccc}
1 & 1 & 1 \\
4 & 5 & 0 \\
0 & -5 & 3
\end{array}\right|=1.5 \cdot 3-1 \cdot 4 \cdot 5-1 \cdot 3 \cdot 4=-17 \\
& \Delta_{2}=\left|\begin{array}{ccc}
-1 & 1 & 1 \\
3 & 4 & 0 \\
0 & 0 & 3
\end{array}\right|=-1.4 \cdot 3-1.3 .3=-21 \\
& \Delta_{3}=\left|\begin{array}{ccc}
-1 & 1 & 1 \\
3 & 5 & 4 \\
0 & -5 & 0
\end{array}\right|=-1.3 \cdot 5-1 \cdot 4.5=-35
\end{aligned}
$$

Then the currents are:

$$
\begin{aligned}
& I_{1}=\frac{\Delta_{1}}{\Delta}=\frac{-17}{-39}=0,436[\mathrm{~A}] \\
& I_{2}=\frac{\Delta_{2}}{\Delta}=\frac{-21}{-39}=0,539[\mathrm{~A}] \\
& I_{3}=\frac{\Delta_{3}}{\Delta}=\frac{-35}{-39}=0,897[\mathrm{~A}]
\end{aligned}
$$

Tutorial exercise in Theory of Electrical Engineering. DC steady state circuit analysis. Author: Assoc. Prof. Dr. Boris Evstatiev, University of Ruse Angel Kanchev.

Conservation of power

In order to verify the conservation of power we need the voltage drop on the current source. We could obtain it from a loop though the current source and R_{3}. The KVL is:

$$
U_{I}-R_{3} \cdot I_{3}=0 \quad \rightarrow \quad U_{I}=R_{3} \cdot I_{3}=3 \cdot I_{3}=3 \cdot 0,897=2,691[\mathrm{~V}]
$$

Then the power of the sources is:

$$
P_{S R C}=P_{E 1}+P_{I 4}=E_{1} . I_{1}+U_{I} . I_{4}=4.0,436+2,691=4,44[\mathrm{~W}]
$$

The power of the consumers is:

$$
P_{\text {CONS }}=R_{1} I_{1}^{2}+R_{2} I_{2}^{2}+R_{3} I_{3}^{2}=0,436^{2} \cdot 3+0,539^{2} \cdot 5+0,897^{2} .3=4,44[\mathrm{~W}]
$$

Since $\quad P_{\text {SRC }}=P_{\text {CONS }}$ the power is conserved, which means we have solved the circuit correctly.

Task 4. Obtain the currents in the circuit using nodal analysis.

The circuit has 2 nodes. We connect the lower one (n. 0) to ground so it has node voltage $U_{0}=0 \mathrm{~V}$. Then the unknown node voltage is U_{1}.

We can write a KCL equation for node 1 :

$$
I_{1}+1=I_{2}+I_{3}
$$

The three currents can be estimated using Ohm's law:

$$
\begin{aligned}
& I_{1}=\frac{U_{0}-U_{1}+4}{3}=\frac{-U_{1}+4}{3} \\
& I_{2}=\frac{U_{1}-U_{0}}{5}=\frac{U_{1}}{5} \\
& I_{3}=\frac{U_{1}-U_{0}}{3}=\frac{U_{1}}{3}
\end{aligned}
$$

We substitute the three currents in the KCL equation:

$$
I_{1}+1=I_{2}+I_{3} \quad \rightarrow \quad \frac{-U_{1}+4}{3}+1=\frac{U_{1}}{5}+\frac{U_{1}}{3} \quad \rightarrow \quad U_{1}\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{3}\right)=\left(1+\frac{4}{3}\right)
$$

Then the node voltage is:

$$
U_{1}=2,692[\mathrm{~V}]
$$

Tutorial exercise in Theory of Electrical Engineering. DC steady state circuit analysis. Author: Assoc. Prof. Dr. Boris Evstatiev, University of Ruse Angel Kanchev.

Now we can find the three currents:

$$
\begin{aligned}
& I_{1}=\frac{-U_{1}+4}{3}=\frac{-2,692+4}{3}=0,436[\mathrm{~A}] \\
& I_{2}=\frac{U_{1}}{5}=\frac{2,692}{5}=0,539[\mathrm{~A}] \\
& I_{3}=\frac{U_{1}}{3}=\frac{2,692}{3}=0,897[\mathrm{~A}]
\end{aligned}
$$

Note that we obtained results using Kirchoff's law method, but this time there was only 1 equation and 1 unknown.

Task 5. Obtain the currents in the circuit using Mesh analysis.

We define enough number of loops, so that all circuit elements are included and all loops rotate in the same direction (clockwise). One of the mesh currents (I_{3}^{K}) goes through the current source with an opposite direction, so its size is known:

$$
I_{3}^{K}=-I_{4}=-1[A]
$$

For the other two loops we write KVL equations:

$$
\begin{array}{ll}
E_{1}=I_{1}^{K}\left(R_{1}+R_{2}\right)-I_{2}^{K} R_{2} \quad \rightarrow & 8 I_{1}^{K}-5 I_{2}^{K}=4 \\
0=I_{2}^{K}\left(R_{2}+R_{3}\right)-I_{1}^{K} R_{2}-I_{3}^{K} R_{3} & \rightarrow \quad 8 I_{2}^{K}-5 I_{1}^{K}=-3
\end{array}
$$

We write the system of equations in matrix form:

$$
\left|\begin{array}{c}
I_{1}^{K} \\
I_{2}^{K}
\end{array}\right| \begin{array}{cc}
8 & -5 \\
-5 & 8
\end{array}\left|=\left|\begin{array}{c}
4 \\
-3
\end{array}\right|\right.
$$

The determinants are:

$$
\begin{aligned}
& \Delta=\left|\begin{array}{cc}
8 & -5 \\
-5 & 8
\end{array}\right|=64-25=39 \\
& \Delta_{1}=\left|\begin{array}{cc}
4 & -5 \\
-3 & 8
\end{array}\right|=32-15=17 \\
& \Delta_{2}=\left|\begin{array}{cc}
8 & 4 \\
-5 & -3
\end{array}\right|=-24+20=-4
\end{aligned}
$$

Then the two mesh currents are:

Tutorial exercise in Theory of Electrical Engineering. DC steady state circuit analysis. Author: Assoc. Prof. Dr. Boris Evstatiev, University of Ruse Angel Kanchev.

$$
\begin{aligned}
& I_{1}^{K}=\frac{\Delta_{1}}{\Delta}=\frac{17}{39}=0,436[\mathrm{~A}] \\
& I_{2}^{K}=\frac{\Delta_{2}}{\Delta}=\frac{-4}{39}=-0,103[\mathrm{~A}]
\end{aligned}
$$

The branch currents are an algebraic sum of the mesh currents, going through them:

$$
\begin{aligned}
& I_{1}=I_{1}^{K}=0,436[A] \\
& I_{2}=I_{1}^{K}-I_{2}^{K}=0,436+0,103=0,539[A] \\
& I_{3}=I_{2}^{K}+1=0,897[A]
\end{aligned}
$$

Task 6. Analyze the circuit using Thevenin's theorem and obtain the power dissipated by the load R_{T}.

First we obtain the short circuit current of the equivalent Thevenin generator:

The resistors R_{1} and R_{2} are shunted, so there will be no voltage drop on them. Then the short circuit current is:

$$
\left.I_{K C}=I_{1}=1 \mid A\right]
$$

Now we need to obtain the open circuit voltage $U_{\Pi X}$

The equivalent resistance of R_{1} and R_{2} is:

$$
R_{E K B}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{4.6}{4+6}=2,4[\Omega]
$$

Tutorial exercise in Theory of Electrical Engineering. DC steady state circuit analysis.
Author: Assoc. Prof. Dr. Boris Evstatiev, University of Ruse Angel Kanchev.
Then the open circuit voltage can be obtained using Ohm's law:

$$
U_{\Pi X}=I_{1} R_{E K B}=2,4.1=2,4[\mathrm{~V}]
$$

So the Thevening voltage source has the following characteristics:

$$
\begin{aligned}
& E_{\text {TEB }}=U_{\Pi X}=2,4[V] \\
& R_{\text {TEB }}=\frac{U_{\Pi X}}{I_{\text {KC }}}=\frac{2,4}{1}=2,4[\Omega]
\end{aligned}
$$

and the Thevenin equivalent circuit is:

Then the load's current and the dissipated power are:

$$
\begin{aligned}
& I_{R}=\frac{E_{\text {TEB }}}{R_{\text {TEB }}+R_{T}}=\frac{2,4}{2,4+10}=0,194[\mathrm{~A}] \\
& P_{R T}=I_{R}^{2} R_{T}=0,194^{2} \cdot 10=0,375[\mathrm{~W}]
\end{aligned}
$$

